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Summary

Monogenic forms of diabetes mellitus cover a heterogen-
eous group of diabetes which are uniformly caused by a
single gene mutation and are characterised by impaired in-
sulin secretion of the pancreatic beta cell. It is estimated
that they account for up to 5% of all cases of diabetes mel-
litus, which are often not diagnosed or are misclassified as
type 1 or 2 diabetes. However, accurate diagnosis is im-
portant because of the special implications for treatment,
prognosis and family risk. The knowledge of typical clin-
ical features such as mode of inheritance, age at diagnosis
and impaired insulin secretion, as well as genetic testing es-
tablishes the diagnosis of MODY, mitochondrial diabetes
and neonatal diabetes.
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Introduction

It is estimated that monogenic forms of diabetes mellitus,
i.e. caused by a single gene mutation, account for some
2–5% of all cases of diabetes mellitus [1–3]. Monogenic
diabetes mellitus due to defects in insulin secretion com-
prises a genetically heterogeneous group of diabetes mel-
litus including MODY (maturity-onset diabetes of the

Figure 1

Pancreatic beta cell: the coupling of glucose sensing via GLUT-2
transporters, generation of ATP, membrane depolarization by
closing potassium channels, entering of calcium ions, and
exocytosis of insulin.

young), mitochondrial diabetes and neonatal diabetes.
However, the common pathophysiological pathway in
monogenic disorders is impaired insulin secretion of the
pancreatic beta cell [1]. The proper diagnosis of monogenic
diabetes mellitus and differentiation from type 1 and type 2
diabetes is important in view of the implications for treat-
ment and prognosis as well as for identification of fam-
ily members at risk of diabetes [4–6]. Although monogenic
diabetes mellitus is characterised by typical features such
as young age at diagnosis (<25 years), a pronounced family
history and non-obesity, low HbA1c and negative pancre-
atic auto-antibodies, definite diagnosis is possible only by
genetic testing, which is expensive and not readily avail-
able [7, 8]. Therefore, knowledge of the clinical presenta-
tion of monogenic diabetes mellitus is essential to establish
high pretest probability and the diagnosis, which on aver-
age is delayed by more than 10 years [9]. At present it is
estimated that more than 80% of patients with monogenic
diabetes are not diagnosed or are misclassified as type 1 or
type 2 diabetes [3].

Insulin secretion in monogenic
diabetes mellitus

Blood glucose concentration is the main determinant of
beta cell insulin secretion: glucose is transported into the

Figure 2

Location of the gene mutations and affected proteins in the
pancreatic beta cell in monogenic diabetes mellitus.
MODY (red), mitochondrial diabetes (blue) and neonatal diabetes
(green).
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beta cell by the GLUT-2 transporter. After glucose phos-
phorylation by glucokinase, ATP is generated via glycolys-
is and the Krebs cycle in the mitochondria. ATP then closes
sensitive potassium channels leading to membrane depol-
arisation and opening of calcium channels, which initiates
exocytosis of insulin; this is biosynthesised in the endo-
plasmic reticulum and stored in secretory granules (fig. 1)
[10, 11]. A large number of gene mutations have been de-
scribed to date (e.g. over 800 mutations for the MODY
genes) uniformly causing monogenic diabetes mellitus by
disturbing the coupling of blood glucose concentration and
insulin secretion [1, 12, 13]. Depending on the specific
gene mutation, the biosynthesis and secretion of beta cell
insulin is altered at various stages (fig. 2): the genes af-
fected in MODY encode the enzyme glucokinase (GCK
[MODY 2]), the transcription factors (HNF4A [MODY 1],
HNF1A [MODY 3], PDX1 [MODY 4], HNF1B [MODY
5], NeuroD1 [MODY 6]), the tumour suppressor protein
KLF-11 (MODY 7), the carboxyl ester lipase CEL (MODY
8), the transcription factor PAX-4 (MODY 9), and the in-
sulin gene (MODY 10) [13–22]. Still more novel gene vari-
ants have been described very recently and their possible
role in diabetes is under investigation [23]. The mitochon-
drial DNA mutation A3243G causes mitochondrial dys-
function in mitochondrial diabetes (also designated by the
acronym MIDDM = maternally inherited deafness and dia-
betes mellitus) [24]. Neonatal diabetes mellitus may res-
ult from different mutations involving the Kir6.2 genes
(KCNJ11 and ABCC8) [25], the transcription factor genes
(HNFB1B and IPF-1 gen) [26, 27], or the glucokinase gene
[28, 29].

Maturity-onset diabetes of the young
(MODY)

The prevalence of the different gene mutations varies
widely in patients with MODY: whereas the mutation of
HNF1A (encoding hepatic nuclear factor-1α, MODY 3) ac-
counts for 50–70%, the mutation of the GCK (encoding

Figure 3

Mitochondrial DNA schematically depicted as circular double-strand
DNA with some mutation syndromes.
MIDDM = maternally inherited deafness and diabetes mellitus;
MELAS = mitochondrial encephalomyopathy, lactic azidosis and
stroke-like episodes; DIDMOAD = diabetes insipidus, diabetes
mellitus, optic atrophy, and deafness; KSS = Kearns-Sayre
syndrome; LHON = Leber‘s hereditary optic neuropathy; MERRF =
myoclonic epilepsy, ragged-red fibers; NARP = neuropathy, ataxia,
and retinitis pigmentosa.

glucokinase, MODY 2) for 20–30%, and the mutation of
HNF4A and HNF1B (encoding hepatic nuclear factor-4α
and hepatic nuclear factor-1β, MODY 1 and MODY 5 re-
spectively) account for 5% each, the remaining gene muta-
tions are very rare and described only in a few families rep-
resenting fewer than 1% of all MODY cases [2, 9, 10].
The clinical pattern of MODY is characterised by (1.)
young age at diagnosis, i.e. usually between age 10 to 45,
(2.) a marked family history with diabetes in every gener-
ation due to autosomal dominant inheritance, (3.) absence
of obesity and insulin resistance, (4.) commonly mild hy-
perglycaemia without the need for insulin therapy, and (5.)
negative testing for auto-antibodies against pancreatic beta
cell antigens (GAD 65 and IA2) [1, 2, 4, 9, 30]. A re-
cently published clinical predictive score to calculate the
individual risk of contracting MODY [8] considered lower
HbA1c, parent with diabetes, female sex and older age to
distinguish MODY from type 1 diabetes, and lower BMI,
younger age, female sex, lower HbA1c and no treatment
with oral antidiabetic drugs or insulin to distinguish from
type 2 diabetes. The sensitivity and specificity of the mod-
els now available online at www.diabetesgenes.org attained
over 90% by using optimal cut-offs, and are thus a valuable
means of identifying patients with probable MODY and
optimising genetic testing. Table 1 summarises the manner
of distinguishing clinical features of MODY from type 1
and type 2 diabetes.
MODY 3, the most prevalent MODY form, is denoted by
high penetrance and a typical age of manifestation of under
30 years [31]. It presents early glucosuria and accentuated
postprandial hyperglycaemia which increases over time
due to a decline in beta cell insulin secretion by 1–4% per
year [32]. Treatment with antidiabetic drugs is therefore
needed, preferably with sulfonylurea and insulin during
pregnancy [33]. Strict glycaemic control during pregnancy
is mandatory because maternal hyperglycaemia lowers the
age of MODY manifestation in the offspring by more than
10 years [34]. The occurrence of microvascular (particu-
larly retinal and renal) and macrovascular complications is
comparable to type 1 and type 2 diabetes, likewise depend-
ing on the duration and control of diabetes [35, 36].

Figure 4

Pedigree of a 52-year-old woman with MIDDM (arrow), in whom
diabetes was diagnosed at the age of 31 years during her first
pregnancy with characteristic matrilinear transmission and hearing
loss. In her son mitochondrial diabetes mellitus was diagnosed at
the age of 16.
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MODY 2, the other common MODY form, typically causes
hyperglycaemia starting at birth [13, 37]. As a consequence
of the impaired conversion of glucose to gluc-
ose-6-phosphate and hence reduced glucose sensing, in-
sulin secretion starts at a higher threshold (at blood glucose
of 6–7 mmol/l instead of 5 mmol/l) resulting in mild and
not worsening hyperglycaemia without the need for treat-
ment and without secondary complications [38].
MODY 1 presents in a similar manner to MODY 3 (given
the mechanism whereby HNF-4α regulates the expression
of HNF-1α) but is relatively uncommon [1, 2].
MODY 5 is a distinct MODY form with additional renal
cysts and genitourinary malformation (aplasia of the vasa
deferentia and of the vagina) [39]. The spectrum of clinical
features varies, in that at one time diabetes dominates and
at another time the urinary tract malformations [40–42].
Contrary to the other MODY forms there is a high rate of
spontaneous mutations, making family history unreliable
and often rendering insulin treatment necessary [43].
The remaining rare MODY forms are accompanied by dis-
turbances of endocrine (MODY 4, MODY 6) [19, 44] and
exocrine (MODY 7, MODY 8, MODY 9) pancreatic devel-
opment [21, 45], or the mutation in the insulin gene and
neonatal diabetes (MODY 10) [46]. Table 2 summarises the
features of the various MODY types.
At present sequencing of the most frequent MODY genes
is routinely performed, i.e. HNF4A (MODY 1), GCK
(MODY 2), HNF1A (or transcription factor-1 TCF-1)
(MODY 3), and HNF1B (or transcription factor-2 TCF-2)
(MODY 5), confirming the diagnosis of MODY in the ma-
jority of cases. However, new gene mutations are regularly
detected [23, 47], also expanding the clinical spectrum of
the MODY subtypes with sometimes considerable overlap
with type 1 and type 2 diabetes. Therefore, other charac-
teristics distinguishing MODY from both common types of
diabetes have been investigated, such as serum high-sensit-
ive C-reactive protein (CRP), which has proved to be lower
in MODY 3 patients than in healthy individuals (because
HNF-1α promotes the expression of CRP [48]). The role of
MRI/CT imaging in identifying pancreatic alterations (i.e.,
pancreatic size, lipomatosis, fibrosis and calcification) in
MODY has also been evaluated. Recent studies described
a slightly reduced pancreatic volume in MODY 3, pancre-
atic hypoplasia with agenesis of the dorsal and caudal part
in MODY 5, as well as pancreatic atrophy and an increased
fat content in MODY 8 [49, 50].
Accurate diagnosis of MODY has important prognostic
and therapeutic implications for the individual and the fam-
ily. Best practice guidelines have been established for mo-

lecular genetic testing in patients with suspected MODY
[2, 5, 7, 9]. They advocate testing in individuals with a
strong family history, presentation at younger age (<25
years) and features atypical for type 1 diabetes (negative
antibodies, insulin independence) or type 2 diabetes (absent
components of the metabolic syndrome). However, taking
further specific clinical features into consideration in-
creases the likelihood of detecting the different MODY
subtypes: if the above-mentioned features are present in
young-onset diabetes, which remains insulin-independent
for more than 3 years and there is marked sensitivity to
sulfonylureas, MODY 3 and 1 are likely; additional renal
and genital abnormalities indicate MODY 5; if there is
persistent mild hyperglycaemia >5.5 mmol/l with only a
small increase in <3 mmol/l in the oGTT, typically dia-
gnosed in pregnancy, MODY 2 is suspected and testing for
GCK mutations recommended. These MODY subtypes 1,
2, 3 and 5 make up over 95% of all MODY gene muta-
tions. Laboratories performing certified sequencing of the
suspected gene(s) are listed on the following website ht-
tp://www.ncbi.nlm.nih.gov/sites/GeneTests/. The actual
cost of one gene sequencing is about CHF 1,200.–, and re-
imbursement by the insurance companies must be applied
for.

Mitochondrial diabetes mellitus

Mitochondrial DNA (mtDNA), which is almost exclus-
ively of maternal origin (fig. 3), harbours 37 genes many of
which encode enzymes involved in oxidative phosphoryla-
tion [51]. Hence mutations in the mtDNA predominantly
affect organs with a high energy demand such as skeletal
muscle, brain, sensory organs and pancreatic beta cells
causing a wide spectrum of syndromes (fig. 4): the point
mutation A→G at position 3243 generates mitochondrial
diabetes with deafness (MIDDM) at an estimated preval-
ence of 0.4 to 1.5% [52], and the MELAS syndrome (mi-
tochondrial encephalomyopathy, lactic acidosis and stroke-
like episodes). The clinical manifestations of MIDDM, in-
cluding age of onset and requirement of insulin treatment
depend on the heteroplasmy, i.e. the level of mutated
mtDNA in the individual patient [53, 54]. Thus the age
when diabetes is diagnosed ranges from 8–70 years with a
mean of 35 years, and ketoacidosis occurs in almost one
third of patients. Hearing loss affects 90% and myopathy
30% of patients with MIDDM. Because diabetes develops
due to failure of insulin secretion, most patients will even-
tually need insulin treatment, whereas metformin should be
not be given because of possible myopathy [55]. Diabetes

Table 1: Clinical characteristics of MODY vs diabetes type 1 and type 2 (adapted from [1, 2, 9]).

Characteristic MODY Type 1 diabetes Type 2 diabetes

Age at diagnosis <25 y 5–20 y >25 y

Parental history 60–95% <10% 10–40%

Inheritance Autosomal dominant autoimmune disease polygenic

Obesity
Insulin resistance
Metabolic syndrome

} Uncommon Uncommon Common

Beta cell antibodies Absent Present Absent

C-peptide Normal Undetectable High – low

Optimal treatment Sulfonylurea
(MODY 1,3,4)

Insulin Metformin
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is also associated with other mtDNA mutation syndromes
such as the Wolfram syndrome (the acronym DIDMOAD
stands for diabetes insipidus, diabetes mellitus, optic at-
rophy and deafness) [57] or Kearns-Sayre syndrome (KSS,
external ophthalmoplegia, cardiac conduction block, retinal
degeneration, deafness, and ragged red muscle fibers) [57].

Neonatal diabetes mellitus

Neonatal diabetes mellitus describes a heterogeneous
group of diabetes forms occurring until the age of six
months in about 1:200,000 live births [58], caused by muta-
tions of different genes involved in pancreatic organogen-
esis, formation of beta cells and insulin synthesis. Depend-
ing on the underlying gene mutations, neonatal diabetes is
classified into transient or permanent. Due to the intrauter-
ine insulin deficiency children are small for gestational age,
with diminished subcutaneous fat.
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Figures (large format)

Figure 1

Pancreatic beta cell: the coupling of glucose sensing via GLUT-2 transporters, generation of ATP, membrane depolarization by closing
potassium channels, entering of calcium ions, and exocytosis of insulin.

Figure 2

Location of the gene mutations and affected proteins in the pancreatic beta cell in monogenic diabetes mellitus.
MODY (red), mitochondrial diabetes (blue) and neonatal diabetes (green).
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Figure 3

Mitochondrial DNA schematically depicted as circular double-strand DNA with some mutation syndromes.
MIDDM = maternally inherited deafness and diabetes mellitus; MELAS = mitochondrial encephalomyopathy, lactic azidosis and stroke-like
episodes; DIDMOAD = diabetes insipidus, diabetes mellitus, optic atrophy, and deafness; KSS = Kearns-Sayre syndrome; LHON = Leber‘s
hereditary optic neuropathy; MERRF = myoclonic epilepsy, ragged-red fibers; NARP = neuropathy, ataxia, and retinitis pigmentosa.
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Figure 4

Pedigree of a 52-year-old woman with MIDDM (arrow), in whom diabetes was diagnosed at the age of 31 years during her first pregnancy with
characteristic matrilinear transmission and hearing loss. In her son mitochondrial diabetes mellitus was diagnosed at the age of 16.
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